

Spatial data and analysis in R ESM – internal course series

IIASA, International Institute for Applied Systems Analysis

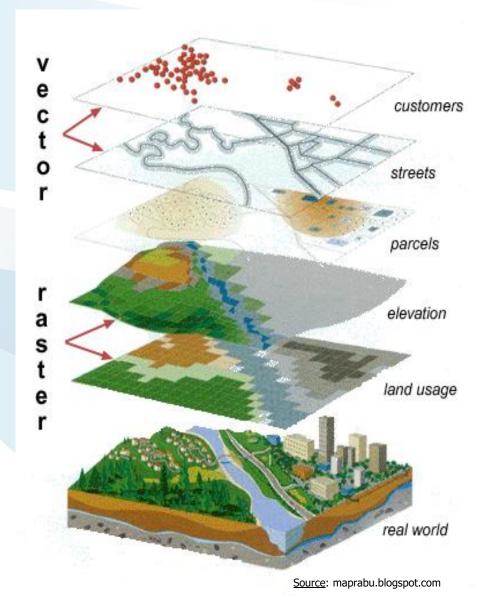
Martin Jung, PhD (jung@iiasa.ac.at)

Introduction talk (14:00 – 14:45pm, 22th October 2020)

Self study tutorials (online self paced, link at end of slides)

All slides and materials online

https://tinyurl.com/TrainSpatR



What is GIS?

A geographic information system (**GIS**) is a system designed to capture, store, manipulate, analyze, manage, and present types of geographical data.

Types of spatial data

S

Format:
*.shp, *.gpkg, *.gpx, *.kml, ...

Format: *.tif, *.vrt, *.hdr, *.asc, ...

Vector

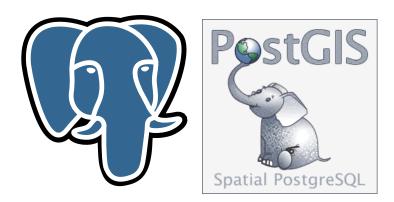
Advantage: Accuracy, more visually pleasing

Disadvantage: Space-inefficient. Every vertex needs to be stored. Algorithms computational intensive.

Raster

Advantage: Geogr. Position associated with data, easier for analysis

Disadvantage: Resolution dependent on cellsize. Lack of attributes, MAUP



SpatiaLite

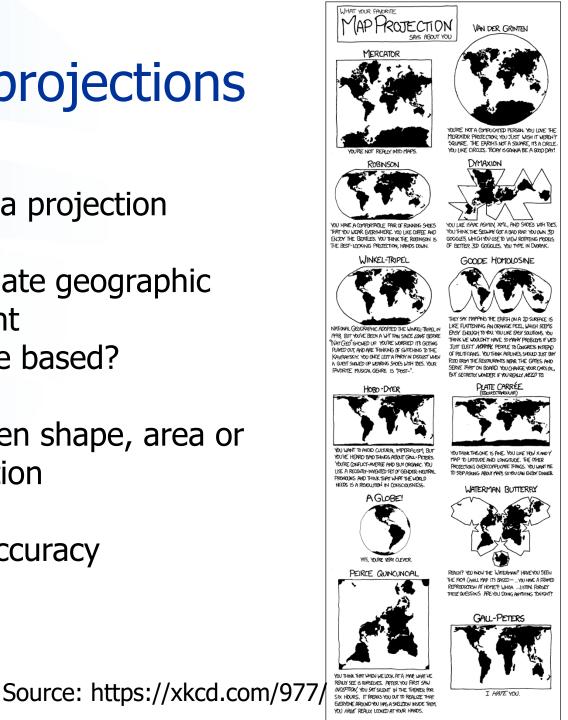
PostgreSQL & PostGIS

And many more ...

Stop using shapefiles!

Multifile system (.shp,.shx,.dbf,.prj, ...) Limited to 2GB (4GB) Attribute names limitation Etc...

Solution \rightarrow OGC Geopackages



Geographic projections

Spatial data requires a projection

Choosing an appropriate geographic projection is important

- Meter or degree based?
- Tradeoff between shape, area or distance distortion
- Aesthetics vs accuracy

Why use R for spatial analyses?

- ✓ Open source
- ✓ Efficiency ('Don't repeat yourself')
- Cross system availability (Win,*Nix, MacO\$
- Extendable and rich functionality
- Clean coding (also for `tidy' data concept)
- Parallel computing support
- ✓ Integration of C, C++ code for speed

Many spatial packages

Environmental Modelling & Software

Volume 133, November 2020, 104799

Position Paper

Harmonise and integrate heterogeneous areal data with the R package arealDB

Steffen Ehrmann ^{a, d} $\stackrel{\otimes}{\sim}$ \boxtimes , Ralf Seppelt ^{b, c}, Carsten Meyer ^{a, c, d} $\stackrel{\otimes}{\sim}$ \boxtimes

Source: <u>https://doi.org/10.1016/j.envsoft.2020.104799</u>

geemap: A Python package for interactive mapping with Google Earth Engine

Qiusheng Wu¹

1 Department of Geography, University of Tennessee, Knoxville, TN 37996, United States

DOI: 10.21105/joss.02305

One comprehensive list of spatial packages

https://cran.rproject.org/web/views/Spatial.ht ml

Why/When not to use R for spatial analyses?

R can be slow
Many (sp) packages not memory efficient
Often little support
No GUI
Greater proficiency in other languages

(Personal opinion)

The diversity of open source GIS solutions is both its greatest strength and weakness

The backbone of most open-source GIS

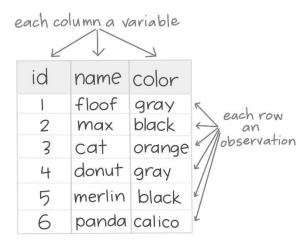
Making location count.

S

Standards like WMS, KML, GML, SFC

Main packages: '**Sp**', '**raster**' and '**rgdal**' still go-to functions to use

Problem: Each have their own object-based model, often inefficient code

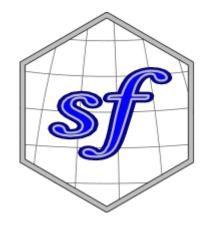


TIDY DATA is a standard way of mapping the meaning of a dataset to its structure.

-HADLEY WICKHAM

In tidy data:

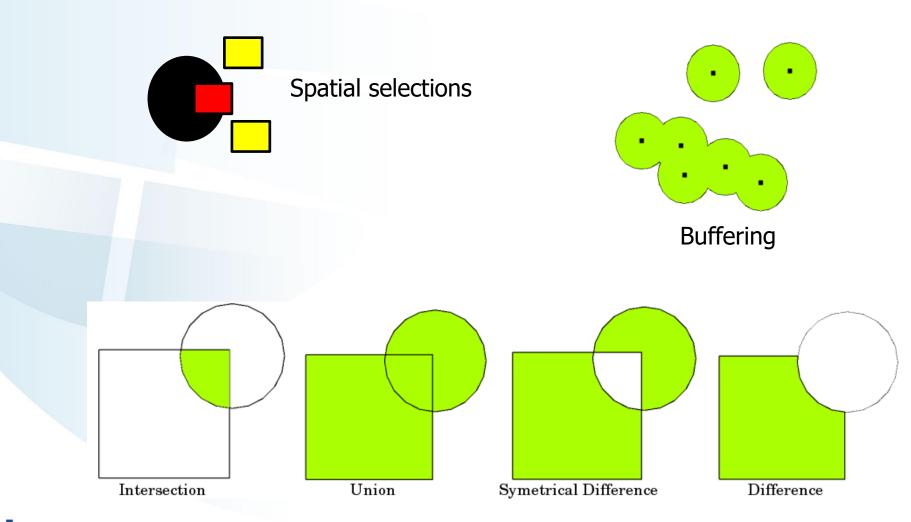
- each variable forms a column
- each observation forms a row
- each cell is a single measurement



Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

Artwork by @allison_horst

Tidy data and simple features



Simple Features are a set of OGC standards how spatial (vector) data is to be stored

Source: https://r-spatial.github.io/sf/articles/sf1.html

## ##	geo dir		/ type:	MULTII XY	collection with 100 features and 6 fields MULTIPOLYGON XY xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965								
##	epsg (SRID):			4267	4267								
##	proj4string: +			+proj:	+proj=longlat +datum=NAD27 +no_defs								
##	pre	ecisio	on:	double	e (defa	ault; n	o preci	lsion model)					
##	Fi	rst 3	featu	res:									
##	E	BIR74	SID74	NWBIR74	BIR79	SID79	NWBIR79	geom					
##	1	1091	1	10	1364	Θ	19	MULTIPOLYGON(((-81.47275543					
##	2	487	0	10	542	3	12	2 MULTIPOLYGON(((-81.23989105					
##	3	3188	5	208	3616	6	260	MULTIPOLYGON(((-80.45634460					
						Simple feat	ture <mark>Sim</mark> j	Simple feature geometry (sfg) pple feature geometry list-colum (sfc)					

Spatial analyses – vector data

Source: QGIS documentation

Example code in R using 'sf '

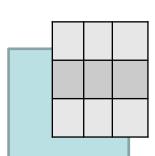
World %>%

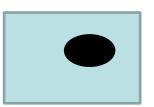
st_transform(crs = 54009) %>% st_buffer(1000) %>% st_intersects(hotspots) %>% group_by(hotspot_name) %>% summarise(geometry = st_union(geometry), area = st_area(geometry)

Spatial analyses – raster data

Examples

- Aggregations, disaggregations
- Region growth, reclassifications
- Band arithmetic (NDVI etc)
- Terrain analyses (Slope, Aspect, Curvature)

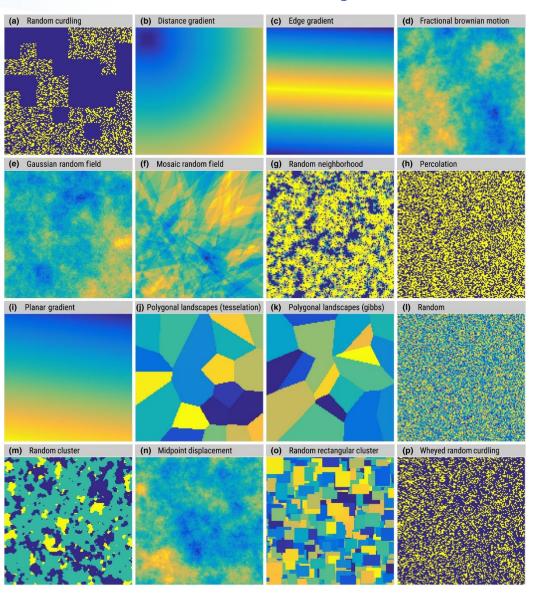



Common spatial tasks I do in R

Aligning raster input data

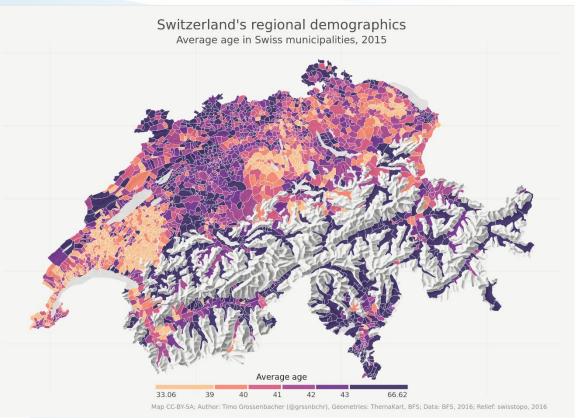
Extracting zonal statistics

Joining spatial and non-spatial data

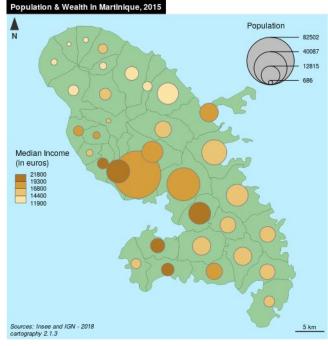


Examples: Neutral landscapes

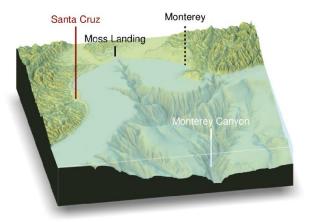
Source: https://ropensci.github.io/NLMR/



Example: Landscape metrics

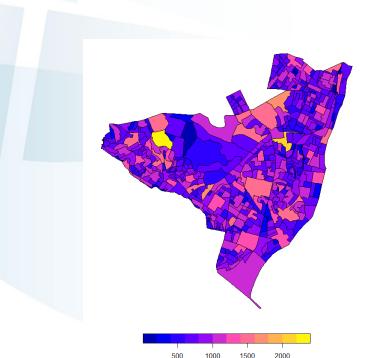

# 1	list all available metrics													
lis	ist_lsm()													
#>	# A tibble: 132 x 5													
#>		metric	name	type	level	function_name								
#>		<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>								
#>	1	area	patch area	area and edge met	patch	lsm_p_area								
#>	2	cai	core area index	core area metric	patch	lsm_p_cai								
#>	3	circle	related circumscribing circle	shape metric	patch	lsm_p_circle								
#>	4	contig	contiguity index	shape metric	patch	lsm_p_contig								
#>	5	core	core area	core area metric	patch	lsm_p_core								
#>	6	enn	euclidean nearest neighbor dis…	aggregation metric	patch	lsm_p_enn								
#>	7	frac	fractal dimension index	shape metric	patch	lsm_p_frac								
#>	8	gyrate	radius of gyration	area and edge met	patch	lsm_p_gyrate								
#>	9	ncore	number of core areas	core area metric	patch	lsm_p_ncore								
#>	10	para	perimeter-area ratio	shape metric	patch	lsm_p_para								
#>	# .	with 1	122 more rows											

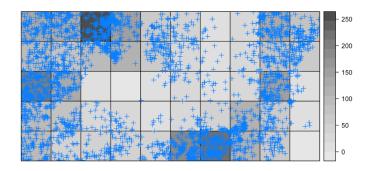
Source: https://r-spatialecology.github.io/landscapemetrics/


Making maps in R

Source: https://timogrossenbacher.ch/2016/12/beautiful-thematic-mapswith-ggplot2-only/

Source: http://riatelab.github.io/cartography




Spatial statistics

(Not covered in the online course!)

Geographically weighted regressions, Kriging, Network analyses, Spatial clustering, Machine learning

A lot of data has spatial structure!

What to do if things don't work

Too slow

→ Check memory requirements, consider tiling

No Function

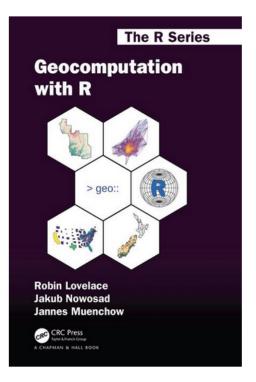
→ Check external tools. Is there a wrapper?
Visualization

 \rightarrow Use QGIS for quick queries

Free online books and materials

Welcome

This is the online home of *Geocomputation with R*, a book on geographic data analysis, visualization and modeling.


Note: This book has now been published by CRC Press in the R Series. You can buy the book from CRC Press, Wordery, or Amazon.

Inspired by **bookdown** and the Free and Open Source Software for Geospatial (FOSS4G) movement, this book is open source. This ensures its contents are reproducible and publicly accessible for people worldwide.

The online version of the book is hosted at geocompr.robinlovelace.net and kept up-to-date by GitHub Actions, which provides information on its 'build status' as follows:

Render-Book-from-master passing

This version of the book was built on GH Actions on 2020-10-06.

Online course materials

Spatial data and analysis in R Sta

Starting page Lecture

Installing packages Contents 👻 Resources

Ģ

Code -

Spatial data and analysis in R

Martin Jung

Ecosystems Services and Management International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Apart from the lecture slides this online self-learning course aims to provide you with basic knowledge about spatial datasets in R, how to load and analyse them. In many instances R might not be the fastest tool one can use for these kinds of analyses, but it certainly is the fastest in terms of time spent in code development. Here we will use R as a wrapper to load in external tools. This course assumes that users already have basic knowledge of R.

I generally tried to avoid replicating things that are already openly available online through other resources. Thus, if you are interested in more or other training materials regarding spatial data and analyses in R, check out the resources link at the top with more examples and free self-learning tutorials.

https://tinyurl.com/TrainSpatR

Thank you for your attention.

Good success with your spatial analyses!

